Categories
Blogs

Understanding Carbon Monoxide(CO):Pollution, Health Impacts,Safety Limits And Industrial Solutions.

Understanding Carbon Monoxide(CO): Pollution, Health Impacts, Safety Limits And Industrial Solutions.

Pollution, especially industrial pollution, is increasing day by day, and the air quality is decreasing as a result. When we talk about air pollution, there are various pollutants like CO2, SO2, and VOC among them. CO, or carbon monoxide,(CO Pollution) is one of them. In this article, we will look into carbon monoxide, its impact on the industrial work environment, health impacts, safety limits, and the solutions required to limit exposure for industry.

What is carbon monoxide (CO)?- CO Pollution

Carbon monoxide (CO) is a poisonous, flammable gas that is colorless, odorless, and tasteless. It is slightly less dense than air and is soluble in water. 

How Carbon Monoxide is Generated:

Carbon monoxide (CO) generated by natural gas, wood, or gasoline is burned incompletely.

Carbon Monoxide (CO) Sources:

Natural Sources:

Natural sources of carbon monoxide include the following:

  • Volcanoes
  • Natural Gas
  • Forest Fires
  • Lighting

Man-made sources

Man-made or artificial sources of carbon monoxide (CO) are as follows:

  • Vehicle Emissions
  • Barbeques
  • Wood stoves
  • Gas and water heaters
  • Gas stoves
  • Fuel-fired heaters
  • Fireplaces
  • Gas dryers

Industrial Sources

  • Metal manufacturing
  • Electricity supply
  • Mining metal, ore, and coal
  • Food manufacturing
  • Extracting oil and gas from land or sea
  • Production of chemicals
  • Cement, lime, plaster 
  • Concrete manufacturing 
  •  Petroleum refining

Industrial Processes That Generate CO

  • Laser Cutting
  • Soldering 
  • Plasma Cutting
Infographic explaining carbon monoxide (CO) pollution, health impacts, safety limits, and industrial solutions.

Health Impacts of Carbon Monoxide(CO Pollution):

Carbon monoxide has Severe health impacts are on industrial workers and all people who are in constant contact with fossil fuel burning and processes that produce carbon monoxide, which are listed above. Some of the important health impacts are listed below:

Short-term:
exposure from breathing carbon monoxide can cause:

  • Headache
  • Nausea and vomiting
  • Blurred vision
  • Confusion
  • Dizziness
  • Chest pain
  • Weakness
  • Difficulty breathing
  • Damage to the heart and brain
  • Unconsciousness

Breathing in high amounts of carbon monoxide is life-threatening.

Long-term:
Exposure to high carbon monoxide levels can cause:

  • Miscarriage
  • Damage to a developing fetus
  • Seizures
  • Coma
  • Heart failure

Safety Limits for Carbon Monoxide (CO Pollution):

The Occupational Safety and Health Administration (OSHA) states that the permissible exposure limit (PEL) for carbon monoxide (CO) is 50 parts per million (ppm). This means that the average concentration of CO in the air over an 8-hour period should not exceed 50 ppm. The 8-hour PEL for CO in maritime operations is also 50 ppm.

You can read various safety limits for CO here.

In India, the Central Pollution Control Board (CPCB) has also set some norms about carbon monoxide exposure. These are as follows:

For industries, the 8-hour PEL of CPCB for industrial, residential, rural, and other areas is 02 mg/m3, and for 1 hour, PEL is 04 mg/m3. The 8-hour PEL of the conditional and sensitivity areas declared by the central government . is 02 mg/m3, and the 1-hour PEL is 04 mg/m3.

Solutions for Carbon Monoxide (CO Pollution) Exposure in Industries:

To limit the exposure of carbon monoxide (CO) in industries and mitigate the risks for industrial workers.

  • Measurement through CO sensors: Industries should monitor and measure carbon monoxide (CO) by using carbon monoxide monitoring sensors, through which they can monitor, control, and measure carbon monoxide exposure.
  • Using extraction solutions: Industries must use extraction solutions to control CO exposure in the industrial environment. Solutions such as Filter on Soldering Fumes Extraction Solutions, Filter on Laser Fumes Extraction Solutions, and Filter on Plasma Cutting Fumes Extraction Solutions are for controlling soldering fumes, laser cutting fumes, and plasma cutting fumes exposure, which also results in CO exposure.
  • Using ventilation solutions: Industries must use ventilation solutions such as LEV (local exhaust ventilation) for a clean air environment in the workplace. 
  • No Vehicle Use for Walking Distance:  Everyone should follow the no vehicle use policy for walking distance, which can reduce CO in the environment. Making such little effort can create a big impact on the environment in the long run, which is the best initiative for our long-term goal, “Mission Zero Pollution.” 
Visit  blogs to learn more about the critical features of clean air system design and air pollution control systems created by Filter On India.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. We specialize and have expertise in welding fumes, oil mist, coolant mist, dust collection, soldering, laser marking, laser cutting, plasma cutting, fumes in fastener manufacturing, ball point tip manufacturing, oil quenching, kitchen fumes, etc. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at our corporate office at Pune, or mail us at : marketing@filter-on.com

Facebook
Twitter
LinkedIn
Categories
Blogs

Clearing the Air: Understanding NO₂ Pollution, Health Risks, Safety Standards, and Industrial Solutions

Clearing the Air: Understanding NO₂ Pollution, Health Risks, Safety Standards, and Industrial Solutions

Air pollution is an important and serious issue, as the world is facing critical consequences due to its impact on people's health. Government . agencies took serious action against those who caused pollution. Nitrogen oxide is one of the primary air components in the air and, if inhaled, is dangerous to health. In this article, we will discuss nitrogen oxide (NO₂ )'s role as a pollutant, health effects due to NO₂ Pollution, safety limits, and industrial solutions and precautions amid its exposure.

What is nitrogen dioxide (NO₂ ) & NO₂ Pollution

Nitrogen dioxide (NO₂ ) is a gaseous air component composed of nitrogen and oxygen. NO₂  is one of a group of related gasses called nitrogen oxides, or NOx. NO₂ is created when fossil fuels such as coal, oil, methane gas (natural gas), or diesel are burned at high temperatures.

Nitrogen Dioxide (NO₂) as a Pollutant:

Natural Sources of Nitrogen Dioxide (NO₂):

Nitrogen dioxide (NO₂) can be formed from both natural and human activity. Natural sources include:

  • lightning strikes
  • volcanoes
  • oceans
  • biological decay

Combustion creates oxides of nitrogen, a major portion of which is nitrogen dioxide. When vehicles emit oxides of nitrogen, 90 to 95 percent of the emissions are nitric oxide (NO).

However, nitric oxide quickly oxidizes in outdoor air when reacting with oxygen, ozone, and volatile organic compounds (VOCs) to form nitrogen dioxide. The oxidation process occurs indoors, but at a slower rate.

Man-Made Sources:

The main source of nitrogen dioxide resulting from human activities is the combustion of fossil fuels (coal, gas, and oil), especially fuel used in cars.

Industrial sources that are responsible for nitrogen oxide (NO₂) are as follows:

Welding:

Nitrous gasses are often responsible for acute poisoning when welding. They occur during gas welding and arc welding processes.

Other than welding, nitrogen dioxide (NO₂) can be found in the following processes:

  • Nitric acid manufacturing
  • Titanium pickling
  • Stainless steel pickling
  • Aluminum bright dip
  • Metal finishing
  • Precious metals refining
  • Chemical etching
  • Fertilizer production
  • Glass making
  • Industrial boilers
  • Aqueous chemical production 

Health Impacts of Nitrogen Dioxide(NO₂ Pollution):

Breathing air with a high concentration of NO₂ Pollution can irritate the airways in the human respiratory system. Such exposures over short periods can aggravate respiratory diseases, particularly asthma, leading to respiratory symptoms (such as coughing, wheezing, or difficulty breathing), hospital admissions, and visits to emergency rooms. Longer exposures to elevated concentrations of NO₂ Pollution may contribute to the development of asthma and potentially increase susceptibility to respiratory infections. People with asthma, as well as children and the elderly, are generally at greater risk for the health effects of NO₂ Pollution.

NO₂ , along with other NOx, reacts with other chemicals in the air to form both particulate matter and ozone. Both of these are also harmful when inhaled due to their effects on the respiratory system.

As per the 1998 National Research Council Committee on Toxicology study, which investigated incidents of accidental exposure to NO₂ Pollution, Workers in agriculture, mining explosions, space exploration, and military activities have been accidentally exposed to high concentrations of NO₂ Pollution, resulting in a wide range of severe medical ailments, including:

  • breathing difficulty
  • fever
  • bronchial pneumonia
  • acute bronchitis
  • death

In short, the health impact of nitrogen dioxide categories is:

Short-term:
Breathing nitrogen oxides can cause:

  • Irritation of the respiratory system, eyes, and skin
  • Aggravation of respiratory diseases, particularly asthma
  • Coughing and choking
  • Nausea
  • Headache
  • Abdominal pain
  • Difficulty breathing

Skin and eye contact with nitrogen oxide gases or liquid nitrogen dioxide can cause irritation and burns.

Long-term:
Long-term exposure to nitrogen dioxide can cause:

Exposure to very high levels of nitrogen oxides may cause:

  • Death
  • Genetic mutations
  • Harm to a developing fetus
  • Decreased female fertility
  • Spasms
  • Swelling of the throat
  • Rapid pulse 
  • Dilated heart

Safety Limits for Nitrogen Dioxide (NO₂ Pollution):

In the industrial environment, nitrogen dioxide (NO₂) has exposure limits set by OSHA that are as follows:.

Safety guidelines by OSHA for NO₂ Pollution

The EPA limit for Nitrogen Dioxide(NO₂) exposure is as follows:

The official level of the annual NO₂ standard is 0.053 ppm, equal to 53 ppb, which is shown here for the purpose of clearer comparison to the 1-hour standard.

In India CPCB has set the norms for Nitrogen Dioxide(NO₂) exposure limits that are as follows:

NO₂ Pollution CPCB Standards
NO₂ Pollution Safety Precautions

How do I evaluate the exposure to nitrogen 

According to the New Jersey Department of Health and Senior Services fact sheet to evaluate exposure to nitrogen dioxide (NO2), here are some answers to the following questions:

  • How hazardous is the substance?
  • How much of the substance is released into the workplace?
  • Whether harmful skin or eye contact could occur?

Safety Precautions for Nitrogen Dioxide (NO₂) Exposure:

  1. Change the NO₂-exposed clothes immediately.
  2. Eye wash fountains are required at the workplace for emergency use.
  3. If skin exposure happens, then emergency shower facilities should be provided.
  4. In an emergency, if the exposure limit is 20 PPM or higher, then you must use strong self-breathing apparatus approved by NIOSH with a full face piece. 
Solutions for Nitrogen Dioxide (NO₂ Pollution) Exposure in Industries:

Nitrogen dioxide is harmful for industrial workers, especially welders, so industries need to take care and implement solutions to control exposure to nitrogen dioxide. The following solutions must be implemented:

Using extraction solutions:

Using extraction solutions like Filter on Welding Fumes Extraction Solutions will be very effective for reducing nitrogen dioxide (NO₂) exposure due to welding fumes. This reduces the concentration in the breathing zone of the welder effectively.

Using ventilation solutions:

Using ventilation solutions can reduce nitrogen dioxide (NO₂) exposure to some extent, so for the safety of welders, companies must take the necessary precautions for ventilation at the workplace. The ventilation facilities have to be arranged in such a way that the welders work in the supply air stream. Ventilation systems like local exhaust ventilation (LEV) are an effective solution in such scenarios. 

Using personal protective equipment:

If the room ventilation is not adequate in particularly confined spaces, then suitable breathing masks have to be worn. These should be independent from the atmosphere, such as, for example, fresh-air breathing apparatus. Welding helmets with a compressed air supply may also be necessary in confined spaces.

Other Solutions:

Companies should pay attention to certain procedural and workplace-specific factors to ensure that nitrous gasses are released in quantities that are as low as possible. These include, among others:

  • Always use smaller burner sizes and flame lengths.
  • Avoiding free-burning flames or
  • Always maintain a small distance between the burner and the workpiece.
  • Always use low-NOx burners in boilers.
  • Please set policies that reduce the use of diesel transportation.
  • Try to switch diesel fuel-burning vehicles to electric vehicles.
  • Encourage public transport, biking, and walking.
Visit  blogs to learn more about the critical features of clean air system design and air pollution control systems created by Filter On India.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. We specialize and have expertise in welding fumes, oil mist, coolant mist, dust collection, soldering, laser marking, laser cutting, plasma cutting, fumes in fastener manufacturing, ball point tip manufacturing, oil quenching, kitchen fumes, etc. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at our corporate office at Pune, or mail us at : marketing@filter-on.com

Facebook
Twitter
LinkedIn
Categories
Blogs

Understanding CO2: Pollution, Impact And Proactive Solutions.

Understanding CO2: Pollution, Impact And Proactive Solutions.

In today’s world, air pollution is a huge and serious issue. Alarming sea levels and the effects of global warming are seen everywhere. Carbon dioxide (CO2) is a major pollutant among all pollutants. It’s effects on the health and environment are problematic in nature. When we talk about industrial pollution, it is one of the problems as well, so in this article, we’ll discuss CO2 and the role of CO2 in air pollution. Its impact on industrial workers as well as industries, the environment, preventive measures, compliance, etc.

What is CO2?

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double-bonded to two oxygen atoms.

CO2 as a Pollutant

Carbon dioxide is a major pollutant in air pollution. When talking about air pollution, this greenhouse gas has a major portion in it.

Sources of CO2 Pollution in the Industrial Indoor Work Environment

There are numerous sources of CO2 pollution. We are here discussing CO2 and its effects on the workplace environment and workers health.

There are mainly four types of sources of CO2 often seen in the indoor industrial environment.

Respiration from employees.
Burning of fuels
Industrial Operations
Goods Transportation

Respiration from Employees

In a close work environment, mostly in offices, CO2 is mostly generated by respiration among the employees.

Burning of Fossil Fuels

The burning of fossil fuels for the operation of machinery is another way of generating CO2, and if there is low ventilation, the CO2 can be hazardous to the workers.

Industrial Operations-

Industrial operations, i.e., processes like welding, cutting, and brazing of metals, generate CO2 because fumes from these processes are more hazardous to the health of the workers. These processes produce more CO2, and without proper ventilation and fume collection systems, in most of the industries, workers face various health issues due to CO2 pollution.

Goods Movement-

Goods movement or transportation in a closed environment where trucks and cranes are used for goods movement in large premises generates CO2 generated through vehicles, which is harmful for the workers and employees who used to work there.

Thus, CO2 as a pollutant plays a major role in industrial indoor air pollution.

Impact of Carbon Dioxide (CO2) on Health:
Short-Term Health Effects:
Exposure to high carbon dioxide levels can cause:

Suffocation by displacement of air: The suffocation-exposed person has no warning and cannot sense the oxygen level is too low, so it leads to a breathing issue.

Incapacitation and unconsciousness: At high concentrations, carbon dioxide can cause unconsciousness and respiratory arrest within one minute.

Headaches: Excessive amounts of carbon dioxide inhalation can cause headaches.

Vertigo and double vision: Carbon dioxide exposure can cause vertigo and double vision. At high levels of exposure, the carbon dioxide itself can cause vertigo, dizziness, nausea, and other symptoms like double vision.

Inability to concentrate: High exposure levels of CO2 lead to concentration problems while working; suffocating environments can cause an inability to concentrate, which results in productivity loss.

Tinnitus: According to one study, chronic tinnitus is related to multisensory environmental hypersensitivity, including CO2 thresholds. Another study reports that tinnitus has been reported in hearing loss secondary to carbon monoxide poisoning.

Seizures: Carbon dioxide (CO2) can increase brain excitability, which can lead to spontaneous seizures.

Breathing in high amounts of carbon dioxide may be life-threatening.

Touching liquid carbon dioxide can cause frostbite or blisters.

Carbon dioxide can cause frostbite when anyone is in contact with solid CO2 (dry ice) and vapors off-gassing from dry ice.

These frostbite blisters on the skin may begin to feel warm—a sign of serious skin involvement. If you treat frostbite with rewarming at this stage, the surface of the skin may appear mottled. And you may notice stinging, burning, and swelling. A fluid-filled blister may appear 12 to 36 hours after rewarming the skin.

Long-Term Health Effects: Prolonged exposure to carbon dioxide may cause:

Changes in bone calcium-induced respiratory acidosis induced by an elevated carbon dioxide (CO2) environment should provoke hypercalciuria with related total body and subsequent bone calcium losses. often leads to osteoporosis.

Changes in body metabolism: In the human body, carbon dioxide is formed intracellularly as a byproduct of metabolism.

Levels of CO2 Exposure to Health

Safe exposure limits for carbon dioxide (CO2):

According to the US Health Department, carbon dioxide is not generally found at hazardous levels in indoor environments. The MNDOLI has set workplace safety standards of 10,000 ppm for an 8-hour period and 30,000 ppm for a 15-minute period. This means the average concentration over an 8-hour period should not exceed 10,000 ppm, and the average concentration over a 15-minute period should not exceed 30,000 ppm. It is unusual to find such continuously high levels indoors and extremely rare in non-industrial workplaces. These standards were developed for healthy working adults and may not be appropriate for sensitive populations, such as children and the elderly. MDH is not aware of lower standards developed for the general public that would be protective of sensitive individuals.

In the Indian context, the exposure limits for CO2 are as follows: CO2 < 1000 PPM (home) < 5000 PPM (workplace-short duration).

Proactive Solutions for CO2 Emissions in Industries


Measure your CO2 levels in industries.
You can measure CO2 levels at your workplace by using a CO2 sensor. The most common type of sensor is the non-dispersive infrared (NDIR) sensor. This sensor measures infrared light in a sample of air. NDIR sensors are popular because they have a long life, are fast, and have low cross-sensitivity to other gases. They can measure CO2 concentrations with high accuracy across a wide range of volumes. The measuring unit detects the CO2 concentration and converts it into a digital display.

Use renewable energy solutions.
You can use renewable energy solutions for CO2 reduction from traditional energy sources. Sources like solar energy and wind energy can reduce the carbon footprint and make industries self-sustainable in the long run.
Use ventilation solutions.
Using ventilation solutions such as local exhaust ventilation, an adequate amount of air flow through windows, and proper placement of machines that are responsible for CO2 generation with effective measures can reduce the carbon footprint in industries.

Use extraction solutions.
Clean air solutions like fume extraction, oil/mist collectors, dust collection systems, and laser cutting extraction solutions can reduce CO2 exposure in industries, which helps workers get proper ventilation at work and can have a positive impact on their productivity.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at Pune, Delhi, Bangalore, or Chennai locations.

Categories
Blogs

Breathable Workspaces: Understanding PM 2.5 and PM10 Pollution

Breathable Workspaces: Understanding PM 2.5 and PM10 Pollution, Knowing Safety Limits, and Implementing Solutions for Worker Health

Today, air pollution is a very sensitive subject for everyone. In every country, cities, and now small villages, are also affected by air pollution due to various pollutants. PM2.5 and PM10 are two of the major pollutants. In industrial environments, PM2.5 and PM10 are present due to various industrial processes. In this article, we are discussing PM2.5 and PM10 as pollutants, their impact on industrial workers, safety and solutions to overcome pollution from them, and government norms and regulations about PM2.5 and PM10 in an industrial context.

What are PM 2.5 and PM 10?

Particulate matter (PM) is a fine, microscopic matter suspended in air or water. PM2.5 and PM10 are the two types of particulate matter.

What is PM2.5?

Particulate Matter (PM) 2.5 is a very small particulate matter with a microscopic size of 2.5 or smaller.

What is PM10?

Particulate Matter (PM) 10 is a small particulate matter with a diameter of a microscopic size of 10 or smaller.

PM2.5 and PM10 as pollutants

PM2.5 and PM10 are small particulate matter that is totally microscopic, so they are inhaled by humans.

PM2.5 Sources

Natural Sources:

>> Forest Fires
>> Volcanic Eruptions
>> Earthquakes

Artificial Sources

Industrial Sources :

Industrial sources include paper pulp industries, oil refineries, brick kilns, power plants, municipal waste treatment plants, industrial fossil fuel burning, and gasoline sources such as sulfur dioxide and nitrogen oxide.

Household Sources :

>> Construction Sites
>> Smoking
>> Cooking, Frying, and Not Maintaining Kitchen Chimneys
>> Wood Burning
>> Biomass Burning

Emissions

>> Emissions from Vehicles

PM10 Sources :

There are various sources of PM10 pollution.
The natural sources include sea salt, dust, etc., whereas man-made sources are as follows:
  • smoke, dust, and dirt from unsealed roads, construction, landfills, and agriculture

  • pollen

  • mold

  • smoke from wildfires and waste burning

Industrial Sources

>> materials handling
>> crushing and grinding operations
>> power generation

In the home, PM10 comes from many sources, some of which are as follows:

>> outdoor sources leaking in through spaces around doors and windows

>> stoves

>> space heaters

Apart from these sources, some of the industrial processes also produce PM2.5 and PM10.

Welding :

Welding is a general process that is carried out in most manufacturing industries. During the welding process, PM2.5 and PM10 are generated when hot metal vaporizes, cools, and condenses into small, solid metal particles. Welding aerosols can be coarse (PM 2.5–10) or fine (PM 0.1–2.5). Welding produces visible smoke that contains harmful metal fumes and gas by-products. Welding workers are exposed to significant amounts of the metal fume PM2.5 during the welding process.

Plasma Cutting-

Plasma cutting generates the highest concentrations of PM2.5. Most aerosols generated during plasma arc cutting are PM 2.5. The fumes and gases generated by plasma cutting depend on whether the cutting is dry or wet.

Some of the other processes are also responsible for PM2.5 and PM10 generation, like diesel exhaust.

Health Effects of PM 2.5 and PM 10.

Particulate Matter (PM) 2.5 and 10 have very serious health effects on humans, mainly those who are most in contact with them. In industries, these pollutants are generated from various industrial processes such as welding, brazing, cutting, etc. So the adverse health effects of these pollutants are as follows:.

Short-term health effects of PM10 can include:

>> Difficulty breathing
>> Coughing
>> Eye, Nose, and Throat Irritation
>> Chest tightness and pain
>> Fatigue
>> General Respiratory Discomfort

Long-term exposure to PM10 can cause more serious health concerns, such as:

>> Lung tissue damage
>> Asthma
>> Heart Failure
>> Cancer
>> Adverse birth outcomes
>> Chronic obstructive pulmonary disease (COPD)
>> Premature death

Health Effects of PM2.5

>> Short-Term Health Effects of PM 2.5
>> Irritation of the throat and airways
>> Coughing
>> Breathing Difficulty

Long-Term Health Effects of PM 2.5

>> Heart and lung disease
>> Bronchitis
>> Emphysema
>> Nonfatal heart attacks
>> Irregular heartbeat
>> Asthma and more intense flare-ups
>> Decreased lung function
>> Early death

Safe Limits for PM 2.5 and PM 10.

There are two types of absorption limits for PM 2.5 and PM 10, as follows:

>> General (Ambient Air) Absorption Limits for PM2.5 and PM 10
>> Industrial Processing Absorption Limits for PM2.5 and PM 10

General (Ambient Air) Absorption Limits for PM2.5 and PM 10

As per CPCB India’s Central Pollution Control Board’s norms, the general (ambient air) absorption limits of PM 2.5 and PM 10 are as follows:

Industrial Process Absorption Limits for PM 2.5 and PM 10.

The industrial process absorption limits for PM2.5 and PM10 as per OSHA standards are as follows:

Solutions to PM 2.5 and 10 in the Industrial Environment

Many countries seek to reduce PM2.5 and PM10 air pollution. For example, in 2019, India joined the United Nations Climate and Clean Air Coalition with the stated goal of reducing particulate matter pollution by 20 to 30 percent by 2024. The country launched the National Clean Air Program in mid-2019.

Solutions on PM 2.5 and PM 10 for Industries

Use Eco-Friendly Process Materials: Industries must use eco-friendly process materials for their processes, such as in welding, where we must use water-based fluxes or electrode coatings, which can reduce the environmental impact of welding. These materials help reduce the fumes generated and waste produced during the welding process.

Use Industrial Air Filtration Systems: Industrial air filtration systems such as welding fume extractors, oil mist collectors, laser marking fume extractors, soldering fume extractors, and dust collectors must be used for air filtration in an industrial work environment to reduce the impact on workers of PM 2.5 and PM 10.

Use Monitors for Measurement of PM2.5 and PM10 Pollution in Industries: Use PM2.5 and PM10 monitors for measurement of the severity of workers health.

Use PPE Equipment While Working: Use personal protective equipment like masks, helmets, hand gloves, and PPE attire while working to reduce PM 2.5 and PM 10 exposure.

Reduce Burning Fossil Fuels: Reducing fossil fuel use and switching over to renewable energy sources can reduce the exposure to PM2.5 and PM10 in industries because the burning of fuels is a major source of PM2.5 and PM10 pollution.

Reducing the use of wood burning: reducing the burning of wood is the best solution to reducing PM2.5 and PM10 pollution.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at Pune, Delhi, Bangalore, or Chennai locations.