Categories
Blogs

Implementing Efficient Solutions: Safeguarding Your Workforce From Health Risks Due To Oil/Coolant Mist.

Implementing Efficient Solutions: Safeguarding Your Workforce From Health Risks Due To Oil/Coolant Mist.

Oil and coolant mist exposure in the industrial environment is a serious health concern for workers nowadays. Every industry working in the area of metalworking and machining has been involved in such an exposure environment. Through this article, we'll look at some effective solutions for protecting workers from health risks caused by oil or cooling mist.

What is an oil mist?

Oil mist is the drizzle, which is made of droplet particles above 1 mm in size. Oil mist is created when oil emissions are used as a lubricant during the machining of metals.

There are two main types of oil mist:
  • Water-based: easier to collect but harder to remove from the air.
  • Oil-based: harder to collect but easier to remove from the air.

Oil Mist Illustrative Image

What is Coolant Mist?

Coolant mist is a mix of coolant and cold air. The coolant mist is used for spraying it on the cutting or machining operations of workpieces.

Types of Coolant Mist:

There are basically three types of coolant mist:

  • Soluble oils: This is a type of coolant mist that is a mixture of oil and water with special chemicals to be used as an emulsion.
  • Synthetic Fluids: This is an organic fluid originated from the synthesis of oils of animal, plant, or mineral origin.
  • Semisynthetic Fluids: It is a mix of conventional and synthetic fluids. It’s made by mixing synthetic and mineral fluids in a ratio of 25:75 to 35:65. The blend helps resist oxidation and withstand high temperatures. It also maintains the right viscosity at both high and low engine temperatures.

Health Effects of Oil Mist on Workers:

Machining oil mist is a common by-product of various industrial processes that involve metal cutting, grinding, and milling. This mist can pose a significant risk to human health if it is not properly controlled or handled. Exposure to machining oil mist can result in a variety of adverse health effects, ranging from minor irritations to serious respiratory problems and cancer.

Immediate Symptoms of Inhaling Oil Mist:

One of the most immediate effects of exposure to machining oil mist is irritation of the eyes, nose, and throat. This irritation can cause symptoms such as burning, itching, and watering of the eyes, as well as sneezing, coughing, and a sore throat. These symptoms may be short-lived, but they can still be uncomfortable and disruptive to work.

Major Effects of Oil Mist on Health:

In addition to these acute symptoms, prolonged exposure to machining oil mist can cause chronic respiratory problems. This mist can enter the lungs and cause inflammation, leading to conditions such as bronchitis and asthma. These conditions can cause difficulty breathing, wheezing, and coughing, making it harder for workers to perform their job duties.

Long-term exposure to machining oil mist has also been linked to an increased risk of lung cancer. The mist contains a variety of harmful chemicals, such as formaldehyde, benzene, and polycyclic aromatic hydrocarbons (PAHs), which are known carcinogens. These chemicals can accumulate in the lungs over time, increasing the risk of cancer.

According to a study and research report published in MDPI’s international journal of environmental research and public health, oil mist exposure can lead to reproductive effects in pregnant workers, which means heavy oil mist exposure can be the main reason behind birth defects and heart defects. You can read more about it here.

Factors Responsible for Exposure to Oil Mist:

The effects of machining oil mist exposure can vary depending on a number of factors, such as

  • The type and amount of mist
  • The duration
  • frequency of exposure,
  • The individual’s susceptibility to the chemicals in the mist

Some people may be more sensitive to these chemicals than others and may experience more severe symptoms or health effects.

How can we minimize the risks of oil mist exposure and prevent workers from getting it?

To minimize the risks associated with machining oil mist exposure, it is important to take appropriate precautions in the workplace.

  • Using ventilation systems to control the spread of mist,
  • wearing protective gear such as masks, goggles, and PPE.
  • implementing safe work practices to reduce exposure. 
  • Regular monitoring of air quality and worker health
  • Machining oil mist collectors plays an important role in protecting health as well as enhancing their productivity.

Why Oil Mist Collectors Are Important:

Machining oil mist collectors are essential tools in many industries where metal cutting and grinding are commonly performed. These devices are designed to capture and remove oil mist and other airborne contaminants from the workplace, improving air quality and protecting the health and safety of workers. There are several types of machining oil mist collectors available, each with its own strengths and weaknesses.

Types of oil/coolant mist collectors:

There are three types of technologies, i.e., mist collectors, available, namely:

  • Electrostatic precipitators(ESP)
  • centrifugal mist collector and
  • Media type filtration

Electrostatic precipitators (ESP)

Working Principles Behind Electrostatic Oil Mist Collectors

Electrostatic oil mist collectors use a high-voltage electrical charge to ionize oil mist particles as they pass through the device. The charged particles are then attracted to a grounded collector plate, where they are deposited and removed from the air stream. The ionization process is highly effective at removing oil mist particles from the air, and the collected oil can be easily recovered for reuse or disposal.

Electrostatic oil mist collectors are highly effective devices used in industrial settings to remove oil mist and other airborne contaminants from the air. They work by using an electrostatic charge to attract and capture oil mist particles as they pass through the device. Electrostatic oil mist collectors offer several technical advantages and benefits compared to other types of mist collectors.

ESP Working for Oil and coolant mist
Ball Point Tips Making Fume and Mist Collection System

Technical Advantages of Electrostatic Oil Mist Collectors

High Efficiency

Electrostatic oil mist collectors are highly efficient at removing oil mist particles from the air, with efficiency rates of up to 99%. This makes them highly effective at maintaining a clean and safe working environment for employees.

Low Maintenance

Electrostatic oil mist collectors require minimal maintenance compared to other types of mist collectors. They do not require frequent filter changes or cleaning, and the collected oil can be easily recovered for reuse or disposal.

Energy Efficient

Electrostatic oil mist collectors are highly energy-efficient, requiring only a small amount of power to operate. This makes them cost-effective and environmentally friendly.

Space-Saving Design

Electrostatic oil mist collectors are typically compact in size and can be easily integrated into existing equipment or workspaces. This makes them ideal for use in small or crowded work environments.

Benefits of Electrostatic Oil Mist Collectors

Improved air quality

Electrostatic oil mist collectors help to improve air quality in the workplace by removing oil mist particles and other airborne contaminants. This can reduce the risk of respiratory problems and other health issues for employees.

Enhanced Safety

Removing oil mist particles from the air can also enhance workplace safety by reducing the risk of slips, falls, and other accidents caused by oily floors and surfaces.

Increased Productivity

A cleaner and safer working environment can help increase employee productivity by reducing absenteeism and improving morale.

Cost Savings

Electrostatic oil mist collectors can help reduce operating costs by minimizing the need for expensive replacement filters and reducing maintenance and cleaning costs.

Electrostatic oil mist collectors are highly efficient devices that offer several technical advantages and benefits compared to other types of mist collectors. They work by using an electrostatic charge to attract and capture oil mist particles from the air, and they require minimal maintenance and energy to operate. By using an electrostatic oil mist collector in your workplace, you can improve air quality, enhance safety, increase productivity, and reduce operating costs.

Centrifugal Working for oil and coolant mist
Coolant Mist Collector For HMC and VMC

Centrifugal Mist Collectors

Centrifugal mist collectors use centrifugal force to separate oil mist particles from the air stream. As the air enters the collector, it is spun at high speed, causing the oil mist particles to move to the outer edge of the device. The particles then collect on a series of baffles or vanes and are removed from the air stream. Centrifugal mist collectors are effective at removing oil mist, but they may require more maintenance than electrostatic precipitators.

Media-Type Filtration for oil and coolant mist
Filter ON ESP Solution for oil and coolant mist

Media Type: Filtration

Media filtration involves passing air through a filter media that captures oil mist particles as they pass through. The filter media may be made of materials such as fiberglass or polyester, and it may be coated with an oil-absorbing material to improve its effectiveness. Media filtration is a common type of mist collection, and it is effective at removing oil mist particles, but it may require frequent filter replacement to maintain its effectiveness.

Government regulations on controlling oil mist exposure

The OSHA Occupational Safety and Health Administration has two permissible exposure limits (PELs) for air contaminants that apply to metalworking fluids (MWFs), i.e., oil and solvent mist:

  • Mineral oil mist: 5 milligrams per cubic meter (mg/m3) for an 8-hour, time-weighted average (TWA)

  • Particulates Not Otherwise Classified (PNOC): 15 mg/m3 for an 8-hour time-weighted average (TWA)

OSHA also requires vent lines at lubrication points to collect stray mist. You can see the different OSHA standards on this page. Click here to view them.

The Indian government’s Factory Act also follows these standards to control oil and coolant  mist exposures in India.

OSHA’s Best Practices to Control Oil/Coolant Mist Exposure:

OSHA has developed some best practices to control oil mist exposure; some of them are as follows:.

  • Obtain Safety Data Sheets (SDSs) from the supplier to know what precautions are recommended.

  • Choose MWFs with the least toxic materials when possible.

  • Maintain proper use of biocides.

  • Keep machines clean and change MWFs as necessary.

  • Use properly designed MWF delivery systems that minimize the amount of fluid mist generated.

You can view the other OSHA best practices by clicking here.

You can also refer to the OSHA best practice manual to understand the risks associated with exposure to oil or coolant mist. Click here to view it.

When do you require an oil/coolant mist collector for your organization?

Oil and solvent mist collectors are adding greater value to your entire machining work environment. They can be a very good asset for your company if you face the following three major problems:

  • The amount and exposure of oil or coolant mist are greater than the standard limits.

  • The affection rate percentage of mist to workers’ health is high.

  • The acceptance rate of production is higher than the average production.

Which is the right oil/coolant mist collector for your organization?

Choosing the right mist collector for your organization is an important task for you as they provide value to the entire work environment, so choosing the right mist collector involves the following factors:

  • Exposure to mist

  • Type of mist

  • Production area and types of machines used

  • Budget and future requirements

Filter On India can help you by carefully analyzing your exact requirements and giving you the proper guidance in choosing the right oil or mist collector for your organization

Visit  blogs to learn more about the critical features of clean air system design and air pollution control systems created by Filter On India.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. We specialize and have expertise in welding fumes, oil mist, coolant mist, dust collection, soldering, laser marking, laser cutting, plasma cutting, fumes in fastener manufacturing, ball point tip manufacturing, oil quenching, kitchen fumes, etc. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at our corporate office at Pune, or mail us at : marketing@filter-on.com

Facebook
Twitter
LinkedIn
Categories
Blogs

Fume Extraction Standards & Regulations: The Essential Guide to Safer Workspaces and Smarter Investments

Fume Extraction Standards & Regulations: The Essential Guide to Safer Workspaces and Smarter Investments

Global market changes Day by day, manufacturers and companies need to comply with standards and regulations at every manufacturing process, such as welding, brazing, oil mist, dust collection, laser marking, laser cutting, etc. These processes need to comply with the safety standards and government regulations for each process as per the latest government norms specified.

Fume extraction standards and regulations

Safety Standards and Exposure Limits For Workers—Welding Applications:

As per the OSHA factsheet and India's PEL (Permissible Exposure Limits), the welding process is as follows:

OSHA standards for galvanized steel:

OSHA warns of welding hazards in galvanized steel and stainless steel. Galvanized steel, coated with zinc, can cause metal fume fever.

Want to know about health hazards related to welding fumes? Click here to read more.

OSHA standards for stainless steel:

Stainless steel coated with chromium is highly toxic and can cause cancer. Companies have a duty to guarantee that no worker is exposed to levels of chromium greater than 5 µg/m³.

Safety Standards and Exposure Limit for Workers: Laser Marking Applications:

  • The Occupational Safety and Health Administration (OSHA) has established safety limits for laser marking, categorized into different classes based on their power and potential hazards.
  • Class 1 is safe under all conditions, while Class 2 is safe for short viewing times but can cause eye damage if mishandled.
  • Class 3B is unsafe for direct viewing and can cause skin and eye injuries.
  • Class 4 is high-power lasers that can cause skin and eye injuries and fire hazards.
  • Laser beams should not be directed at employees, and systems should not be operated in rainy, snowy, or dusty weather conditions.
  • Other safety limits include limiting diffused reflected light to 2.5 watts per square centimeter, preventing employees from exposure to microwave power densities above 10 milliwatts per square centimeter, and having removable panels and doors with interlocks that automatically reduce or stop laser emissions when the enclosure is opened.

Safety Standards and Exposure Limit for Workers: Laser Cutting Applications:

  • The Occupational Safety and Health Administration (OSHA) has established safety limits for laser equipment, categorized by power and hazard level.
  • Class III B lasers are moderate power, while Class IV high power lasers pose hazards to view, ignite materials, and produce air pollutants.
  • It is not appropriate to point the laser beam toward workers, and it is not advisable to run systems in wet, snowy, or dusty environments.Laser equipment labeling should indicate its maximum output, and Class IIIB or Class IV lasers should be enclosed in a Class I enclosure or have a Laser Safety Officer present.
  • Ideally, the laser unit should be set up above employees' heads.

Visit  blogs to learn more about the critical features of clean air system design and air pollution control systems created by Filter On India.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. We specialize and have expertise in welding fumes, oil mist, coolant mist, dust collection, soldering, laser marking, laser cutting, plasma cutting, fumes in fastener manufacturing, ball point tip manufacturing, oil quenching, kitchen fumes, etc. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at our corporate office at Pune and our virtual locations at Delhi, Bangalore, Ahmadabad, Hyderabad, or Chennai locations.

Facebook
Twitter
LinkedIn
Categories
Blogs

Understanding CO2: Pollution, Impact And Proactive Solutions.

Understanding CO2: Pollution, Impact And Proactive Solutions.

In today’s world, air pollution is a huge and serious issue. Alarming sea levels and the effects of global warming are seen everywhere. Carbon dioxide (CO2) is a major pollutant among all pollutants. It’s effects on the health and environment are problematic in nature. When we talk about industrial pollution, it is one of the problems as well, so in this article, we’ll discuss CO2 and the role of CO2 in air pollution. Its impact on industrial workers as well as industries, the environment, preventive measures, compliance, etc.

What is CO2?

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double-bonded to two oxygen atoms.

CO2 as a Pollutant

Carbon dioxide is a major pollutant in air pollution. When talking about air pollution, this greenhouse gas has a major portion in it.

Sources of CO2 Pollution in the Industrial Indoor Work Environment

There are numerous sources of CO2 pollution. We are here discussing CO2 and its effects on the workplace environment and workers health.

There are mainly four types of sources of CO2 often seen in the indoor industrial environment.

Respiration from employees.
Burning of fuels
Industrial Operations
Goods Transportation

Respiration from Employees

In a close work environment, mostly in offices, CO2 is mostly generated by respiration among the employees.

Burning of Fossil Fuels

The burning of fossil fuels for the operation of machinery is another way of generating CO2, and if there is low ventilation, the CO2 can be hazardous to the workers.

Industrial Operations-

Industrial operations, i.e., processes like welding, cutting, and brazing of metals, generate CO2 because fumes from these processes are more hazardous to the health of the workers. These processes produce more CO2, and without proper ventilation and fume collection systems, in most of the industries, workers face various health issues due to CO2 pollution.

Goods Movement-

Goods movement or transportation in a closed environment where trucks and cranes are used for goods movement in large premises generates CO2 generated through vehicles, which is harmful for the workers and employees who used to work there.

Thus, CO2 as a pollutant plays a major role in industrial indoor air pollution.

Impact of Carbon Dioxide (CO2) on Health:
Short-Term Health Effects:
Exposure to high carbon dioxide levels can cause:

Suffocation by displacement of air: The suffocation-exposed person has no warning and cannot sense the oxygen level is too low, so it leads to a breathing issue.

Incapacitation and unconsciousness: At high concentrations, carbon dioxide can cause unconsciousness and respiratory arrest within one minute.

Headaches: Excessive amounts of carbon dioxide inhalation can cause headaches.

Vertigo and double vision: Carbon dioxide exposure can cause vertigo and double vision. At high levels of exposure, the carbon dioxide itself can cause vertigo, dizziness, nausea, and other symptoms like double vision.

Inability to concentrate: High exposure levels of CO2 lead to concentration problems while working; suffocating environments can cause an inability to concentrate, which results in productivity loss.

Tinnitus: According to one study, chronic tinnitus is related to multisensory environmental hypersensitivity, including CO2 thresholds. Another study reports that tinnitus has been reported in hearing loss secondary to carbon monoxide poisoning.

Seizures: Carbon dioxide (CO2) can increase brain excitability, which can lead to spontaneous seizures.

Breathing in high amounts of carbon dioxide may be life-threatening.

Touching liquid carbon dioxide can cause frostbite or blisters.

Carbon dioxide can cause frostbite when anyone is in contact with solid CO2 (dry ice) and vapors off-gassing from dry ice.

These frostbite blisters on the skin may begin to feel warm—a sign of serious skin involvement. If you treat frostbite with rewarming at this stage, the surface of the skin may appear mottled. And you may notice stinging, burning, and swelling. A fluid-filled blister may appear 12 to 36 hours after rewarming the skin.

Long-Term Health Effects: Prolonged exposure to carbon dioxide may cause:

Changes in bone calcium-induced respiratory acidosis induced by an elevated carbon dioxide (CO2) environment should provoke hypercalciuria with related total body and subsequent bone calcium losses. often leads to osteoporosis.

Changes in body metabolism: In the human body, carbon dioxide is formed intracellularly as a byproduct of metabolism.

Levels of CO2 Exposure to Health

Safe exposure limits for carbon dioxide (CO2):

According to the US Health Department, carbon dioxide is not generally found at hazardous levels in indoor environments. The MNDOLI has set workplace safety standards of 10,000 ppm for an 8-hour period and 30,000 ppm for a 15-minute period. This means the average concentration over an 8-hour period should not exceed 10,000 ppm, and the average concentration over a 15-minute period should not exceed 30,000 ppm. It is unusual to find such continuously high levels indoors and extremely rare in non-industrial workplaces. These standards were developed for healthy working adults and may not be appropriate for sensitive populations, such as children and the elderly. MDH is not aware of lower standards developed for the general public that would be protective of sensitive individuals.

In the Indian context, the exposure limits for CO2 are as follows: CO2 < 1000 PPM (home) < 5000 PPM (workplace-short duration).

Proactive Solutions for CO2 Emissions in Industries


Measure your CO2 levels in industries.
You can measure CO2 levels at your workplace by using a CO2 sensor. The most common type of sensor is the non-dispersive infrared (NDIR) sensor. This sensor measures infrared light in a sample of air. NDIR sensors are popular because they have a long life, are fast, and have low cross-sensitivity to other gases. They can measure CO2 concentrations with high accuracy across a wide range of volumes. The measuring unit detects the CO2 concentration and converts it into a digital display.

Use renewable energy solutions.
You can use renewable energy solutions for CO2 reduction from traditional energy sources. Sources like solar energy and wind energy can reduce the carbon footprint and make industries self-sustainable in the long run.
Use ventilation solutions.
Using ventilation solutions such as local exhaust ventilation, an adequate amount of air flow through windows, and proper placement of machines that are responsible for CO2 generation with effective measures can reduce the carbon footprint in industries.

Use extraction solutions.
Clean air solutions like fume extraction, oil/mist collectors, dust collection systems, and laser cutting extraction solutions can reduce CO2 exposure in industries, which helps workers get proper ventilation at work and can have a positive impact on their productivity.

Filter On India has been working towards “Mission Zero Pollution” for the last 40+ years as a clean air solutions partner for industries. Filter On has 70+ clean air solutions, so you can contact us for more information about our solutions. You can reach us through the web or visit us at Pune, Delhi, Bangalore, or Chennai locations.